Innovative Pedagogical Tool:
Python-Based Problem Solving and Analysis of Principal Stresses using

Generative Al.

Course: Mechanics of Deformable Solids

Faculty:

Syed Muhammed Fahd
Associate Professor

Innovative Pedagogical Tool: Python-Based Problem Solving and Analysis of
Principal Stresses using Generative Al.

1. Background and Motivation

Understanding the three-dimensional state of stress and the concept of principal
stresses is a cornerstone of the Mechanics of Deformable Solids course.
Traditionally, this topic is taught using manual calculations as an eigen value problem
and/or Mohr’s circles, which often remain abstract for many students. Recognizing
this gap, the present assignment was conceived as an innovative pedagogical
tool that merges analytical mechanics with computational tools.

The activity directs students to solve a 3D stress problem using Python
programming utilising Gen Al, wherein they compute the principal stresses,
directions, and maximum shear stress by evaluating the eigenvalues and
eigenvectors of the stress tensor. This bridges mathematical formulation with
modern engineering computation.

The assignment aligns directly with Course Outcome (CO1) — “Determine the
principal stresses using tensorial and graphical approach” — and is mapped to PO1
(Engineering Knowledge), PO2 (Problem Analysis), PO5 (Modern Tool Usage),
and PO9 (Teamwork).

2. Explanation of the Innovative Pedagogical Activity

The idea was conceived to move beyond traditional problem-solving exercises and
immerse students in an applied, exploratory learning process. The design process
involved the following pedagogical intentions:

o Bridging Theory and Computation: Students were guided to translate the
mathematical stress tensor formulation into Python code. This computational
step compels them to understand the underlying structure of the stress
components and how eigenvalue analysis yields principal stresses.

« Encouraging Self-Learning and Exploration: Instead of a step-by-step
handout, students were provided with a YouTube video tutorial (prepared by
the faculty) explaining the logic of generating Python code for stress analysis.
This blended-learning component enabled asynchronous, self-paced learning
and helped students visualize the problem computationally.

e Collaborative Learning: The task was assigned in groups of three,
promoting peer-to-peer discussion in generation and debugging of code and
interpretation of results.

3. Pedagogical Objectives and Learning Outcomes

This activity was not simply a coding exercise but a concept-reinforcement
activity with multiple cognitive and skill-based outcomes:

Learning Domain Expected Outcome

Students internalize how a 3D stress tensor is
represented

They apply eigenvalue concepts to determine
principal stresses and directions.

Students learn to use Python as a
computational tool for numerical analysis in
Skill (Modern Tool Usage) solid mechanics. Students also gets an
exposure to use generative Al tools to create
and debug code.

Students engage in team problem-solving,
developing communication skills.

Cognitive (Understanding)

Analytical (Application)

Collaborative (Soft Skills)

4. Reflection and Future Scope
The activity successfully promotes computational thinking within a traditional
mechanics course and demonstrates how use of modern tools can enrich conceptual
subjects.
Future iterations could include:

« Visualization of principal planes using 3D Python plotting (e.g., matplotlib).
Overall, this assignment exemplifies innovative pedagogy through integration of

computation, collaboration, and creativity, aligning with the vision of NEP-2020
to promote experiential and skill-based learning in engineering education.

Mechanics of Deformable Solids
Assignment 1
CO1: Determine the principal stresses using tensorial and graphical approach.

Mapped POs: PO1(3), PO2(3), PO5(2) and PO9(3)

Question:

The state of stress at a point is given by ox=70 MPa, ocy=10 MPa, 0z=-20 MPa, txy=-40 MPa,
Tyz=txz=20 MPa. Determine the principal stresses, direction of maximum principal stress and
the value of maximum shear stress.

Use a python program to compute the principal stresses, direction of maximum principal stress
and the value of maximum shear stress.

Hint: Principal stresses are the eigen values of stress tensor and direction of principal stress is
the eigen vector. Max Shear stress is Tmax= (Omax—Omin)/2

This is a group assignment. Maximum number of students in a group should not exceed 3.
How to submit:

Assignment should be uploaded in ETLAB in a pdf format. It should contain the names and roll
numbers of all group members. The program and the results in proper format. The document
should be in A4 size.

All students must upload the assighment document.

You may watch the following video on how to use python for stress calculations:

https://m.youtube.com/watch?v=9aiGXVP6gug

Video Link

https://www.youtube.com/watch?v=9aiGXVP6gug

Q [J % youtube.comwat.. = | 8 A

> YouTube

6 e =P
g 20 -5 |[MPq

-0 -15 —(0

%G =

Resultant Stvess VQc’fo/
Maa- 6& 7?.5!4”’04'1{' Strecs =

Maﬁ- ”f V\DYMQL 5{'(555/0—:
l\fov'ma(Stress ued—of/g- =

Sheat stiess veckor , T =

Generate Python code using ChatGPT for stress calculations

2 Fahd SM
g 97 subscribers w & 4 Q;' » Share i Download

163 views 28 Jan 2025
Python code to calculate resultant stress vector using Cauchy’s equation. Calculate normal and shear
stresses.

EVALUATION GUIDELINES/RUBRICS

Criteria Description Weight Performance Indicators / Levels
(Marks)
1. Problem Understanding of the 3D state of stress, 3 Marks | 3 — Clear understanding and correct
Formulation and correct construction of the stress tensor, formulation of stress tensor; identifies all
Understanding and clarity in defining the problem. components correctly.
2 — Minor conceptual or notation errors.
1 - Incomplete or partially correct formulation.
0 — Incorrect or missing formulation.
2. Code Accuracy | Correctness and efficiency of Python code, 4 Marks | 4 — Code fully correct, logically structured,
and Logic including matrix representation, eigenvalue— and produces correct outputs without errors.
eigenvector computation, and sorting logic. 3 — Minor syntax or formatting errors not
affecting results.
2 — Partial implementation or logical flaws.
1 — Major conceptual/syntax errors.
0 — Non-functional or missing code.
3. Results and Accuracy of computed principal stresses, 3 Marks | 3 - All results accurate, clearly presented with

Presentation

directions, and maximum shear stress;
clarity of output formatting and
documentation.

units and explanations.

2 — Minor computational or presentation
errors.

1 — Results incomplete or with significant
errors.

0 — No or incorrect results.

Sample Answers

Mechanics of Deformable Solids
Assignment 1

Group Members : Rana Rishan, Akhil Alex, Karthik K
Roll Numbers : B23MEC58, B23MEC12,B23MEC35.

Question : The state of stress at a point is given by ox=70 MPa, ocy=10 MPa, 0z=-20 MPa,
Xy=—-40 MPa, Tyz=1xz=20 MPa. Determine the principal stresses, direction of maximum
principal stress and the value of maximum shear stress. Use a python program to compute
the principal stresses, direction of maximum principal stress and the value of maximum
shear

stress.

import numpy as np

Given stress components
sigma_x =70 # MPa
sigma_y =10 # MPa
sigma_z = -20 # MPa
tau_xy =-40 # MPa
tau yz=20 #MPa
tau xz=20 #MPa

Stress tensor

stress_tensor = np.array([[sigma_x, tau_xy, tau_xz],
[tau_xy, sigma_y, tau_yz],
[tau_xz, tau_yz, sigma_z]])

Compute principal stresses (eigenvalues) and eigenvectors
principal_stresses, principal_directions = np.linalg.eig(stress_tensor)

Sort eigenvalues and corresponding eigenvectors

sorted_indices = np.argsort(principal_stresses)[::-1] # Sort in descending order
principal_stresses = principal_stresses[sorted_indices]

principal_directions = principal_directions[:, sorted_indices]

Maximum shear stress
max_shear_stress = (principal_stresses[0] - principal_stresses[2]) / 2

Display results

print("Principal Stresses (MPa):")

print(f'o1 = {principal_stresses[0]:.2f}, 62 = {principal_stresses[1]:.2f}, 03 =
{principal_stresses[2]:.2f}")

Fahd
Sample Answers

print("\nDirection Cosines of Maximum Principal Stress (01):")
print(f"l = {principal_directions[0, 0]:.3f}, m = {principal_directions[1, 0]:.3f}, n =
{principal_directions[2, 0]:.3f}")

print(f\nMaximum Shear Stress: {max_shear_stress:.2f} MPa")

Output :

Principal Stresses (MPa):
01=90.77, 02 = 11.88, 03 = -42.65

Direction Cosines of Maximum Principal Stress (o1):
=-0.901, m = 0.425, n = -0.086

Maximum Shear Stress: 66.71 MPa

Mechanics Of Deformable Solids
23MET401
Assignment no: 1

Group Members:

Avinash T S - B2BMEC20
Aswaghosh A S - B23MEC19
Anjith K A - B23MEC16

Question:

The state of stress at a point is given by ox=70 MPa, oy=10 MPa, 0z=-20
MPa, txy=—40 MPa, tyz=1xz=20 MPa. Determine the principal stresses,
direction of maximum principal stress and the value of maximum shear
stress. Use a python program to compute the principal stresses, direction
of maximum principal stress and the value of maximum shear stress.

Hint: Principal stresses are the eigen values of stress tensor and direction
of principal stress is the eigen vector. Max Shear stress is
Tmax=(omax—omin)/2

2/8/25, 7:19 PM scratchpad - Colab

import numpy as np

Given stress components (in MPa)

ox = 70
oy = 10
oz = -20
™y = -40
tyz = 20
™z = 20

Stress tensor

stress_tensor = np.array([[ox, txy, t©xZ],
[txy, oy, tyz],
[txz, tyz, oz]])

Compute principal stresses (eigenvalues) and directions (eigenvectors)
principal_stresses, principal_directions = np.linalg.eig(stress_tensor)

Sort the principal stresses and corresponding eigenvectors
sorted_indices = np.argsort(principal_stresses)[::-1] # Descending order
principal_stresses = principal_stresses[sorted_indices]
principal_directions = principal_directions[:, sorted_indices]

Maximum shear stress
max_shear_stress = (max(principal_stresses) - min(principal_stresses)) / 2

#Round of the results to 3 decimal places
principal_stresses = np.round(principal_stresses, 3)
principal_directions = np.round(principal_directions, 3)
max_shear_stress = np.round(max_shear_stress, 3)

Print results

print("Principal Stresses:")

print(f"ol = {principal_stresses[0]:.3f} MPa")
print(f"o02 = {principal_stresses[1]:.3f} MPa")
print(f"o3 = {principal_stresses[2]:.3f} MPa")

print("\nDirection of Maximum Principal Stress (ol):")
print(f"nx = {principal_directions[@, ©]:.3f}")
print(f"ny = {principal_directions[1, ©]:.3f}")
print(f"nz = {principal_directions[2, ©]:.3f}")

print(f"\nMaximum Shear Stress,tmax = {max_shear_stress:.2f} MPa")

3¥ Principal Stresses:
0l = 90.772 MPa
02 11.881 MPa
03 = -42.653 MPa

Direction of Maximum Principal Stress (ol):

nx = -0.901
ny = 0.425
nz = -0.086

Maximum Shear Stress,tmax = 66.71 MPa

https://colab.research.google.com/#scrollTo=11Ydn1woOS1n&printMode=true 1/2

